孙伟研究员课题组碳纳米管晶体管研究取得重要进展

生物自组装结构具有精细的三维形貌,其关键结构参数小于光刻等传统纳米加工手段的分辨率极限。利用自组装生物分子作为加工模板,目前已实现金属材料、碳基材料、氧化物材料的可控形貌合成。然而,基于生物模板的电学器件的性能往往远落后于通过蚀刻或薄膜方法制备的同类器件,且缺乏长程取向规整性,因而制约了生物模板在高性能器件中的应用。

张志勇-彭练矛课题组在用于高性能电子学的高密度半导体阵列碳纳米管研究中取得重要进展

集成电路的发展要求互补金属氧化物半导体(CMOS)晶体管在持续缩减尺寸的同时提升性能,降低功耗。随着主流CMOS集成电路缩减到亚10 nm技术节点,采用新结构或新材料对抗场效应晶体管中的短沟道效应、进一步提升器件能量利用效率变得愈加重要。在诸多新型半导体材料中,半导体碳纳米管具有超高的电子和空穴迁移率、原子尺度的厚度和稳定的结构,是构建高性能CMOS器件的理想沟道材料。已公开的理论计算和实验结果均表明,碳管CMOS晶体管采用平面结构即可缩减到5 nm栅长,且较同等栅长的硅基CMOS器件具有10倍的本征性能-功耗综合优势。

王胜-彭练矛课题组在碳纳米管单片光电集成芯片研究中取得重要进展

单片光电集成芯片研发一直是纳米光子学和电子学领域的重要课题,且在光通信和芯片光互连领域有着重要意义。以硅基为主导的集成电路和以III-V族化合物为主导的光电器件之间由于受制于工艺不兼容,难以高度集成;新兴纳米材料的涌现为此提供了新思路,受到广泛关注。然而,有关纳米材料波导集成的相关文献报道主要集中在石墨烯、黑磷、过渡金属硫族化合物等二维材料,存在暗电流高、稳定性差、工作波长受限等问题,且不具备一种沟道材料同时用来制备高性能光电器件和逻辑器件的潜力。

北京大学、湘潭大学共建的湖南先进传感与信息技术创新研究院微纳加工实验室落成

2019年11月25日,由北京大学、湘潭大学共同组建的湖南先进传感与信息技术创新研究院微纳加工实验室在湘潭大学正式落成。这将是我国中南地区规模最大、达到国内领先水平的微纳传感器加工实验室,包括百级、千级、万级在内的核心超净室约1500平方米以及一批价值2000余万元的微纳加工装备,为研究院打造国内外一流的传感技术基地奠定了坚实基础。中国人民政治协商会议湖南省委员会原主席、湘潭大学董事会董事长王克英,湖南省科技厅党组书记、厅长童旭东,湘潭大学党委书记黄云清,纳米器件物理与化学教育部重点实验室主任张志勇教授等出席落成仪式。